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Abstract—Positioning is a key function for autonomous vehicles that requires globally referenced localization information. Lidar-
based mapping, which refers to simultaneous localization and mapping (SLAM), provides continuous positioning in diverse scenarios. 
However, SLAM error can accumulate through time. Besides, only relative positioning is provided by SLAM. The Global Navigation 
Satellite System (GNSS) receiver is one of the significant sensors for providing globally referenced localization, and it is usually in-
tegrated with lidar in autonomous driving. However, the performance of the GNSS is severely challenged due to the reflection and 
blockage caused by buildings in superurbanized cities, including Hong Kong, China; Tokyo; and New York, resulting in the notori-
ous non-line-of-sight (NLOS) receptions. Moreover, the uncertainty of the GNSS positioning is ambiguous, leading to the incorrect 
tuning of its weight during GNSS–lidar integration. This article innovatively employs lidar to identify the NLOS measurement of 
the GNSS receiver using point-cloud-based object detection. Measurements from satellites suffering from NLOS reception will be 
excluded based on the proposed fault detection and exclusion (FDE) algorithm. Then, GNSS-weight least-square positioning is con-
ducted based on the surviving measurements from FDE. The noise covariance of the GNSS positioning is calculated by considering 
the potential location errors caused by the NLOS and the remaining LOS measurements. The improved GNSS result and its corre-
sponding noise covariance are integrated with lidar through a graph-based SLAM-integration framework. Experimental results in-
dicate that the proposed GNSS–lidar integration can obtain improved positioning accuracy in a highly urbanized area in Hong Kong.
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utonomous vehicles [1], [2] receive increasing attention 
due to their immense potential market. To achieve 
fully autonomous vehicles, globally referenced, me-
ter-level positioning is required in all scenarios. Li-

dar is a commonly used sensor for autonomous driving, not 
only for object detection [3], [4] but to provide continuous 
positioning [5]. In lidar-based positioning, the simultane-
ous localization and mapping (SLAM) [6], [7] algorithm is 
usually employed to calculate the transformation between 
the consecutive point clouds provided by lidar. However, 
the localization from SLAM can introduce accumulated er-
ror through time, and only relative positioning is obtained, 
which cannot satisfy autonomous vehicles’ requirement. 
With the rise of the multi-Global Navigation Satellite System 
(GNSS), the availability of satellites has been significantly 
enhanced, which makes it possible to receive transmissions 
from enough satellites for the GNSS positioning, even in an 
urban canyon. The GNSS is currently a significant source 
that provides continuous global positioning. It is usually in-
tegrated with lidar-based localization to take advantage of 
both positioning sources [8]–[12].

Based on the principle of sensor fusion, sensor-integra-
tion methods can be divided into two groups: filtering based 
and smoothing based. The symbolic filtering-based sensor-
integration method is the Bayes filter, including the Kalman 
filter [13], [14], information filter [15]–[17], and particle fil-
ter [18]–[20]. The Bayes filter-based sensor integration es-

timates the current state from the current observation and 
the previous state approximation, failing to make use of all 
the states before the previous ones. This is because of the as-
sumption of the first order of the Markov model [21], which 
is one of the key suppositions of the Bayes filter. Conversely, 
the smoothing approaches [22]–[25] estimate the pose and 
the map by considering the full sets of measurements, from 
the first epoch to the current one. The most well-known 
smoothing method is graph-based SLAM [26].

These GNSS–lidar integration solutions can obtain 
decent positioning in sparse areas, as shown in Figure 1. 
However, their execution can be severely challenged in su-
perurbanized areas due to the poor performance of, and a 
large uncertainty in, the GNSS positioning. The GNSS can 
achieve a positioning accuracy of 5~10 m in open areas and 
sparse scenarios based on conventional single-point posi-
tioning. However, the positioning error can significantly 
increase to ~50 m in superurbanized areas [27] because of 
the reflection and blockage from the surrounding build-
ings. The reflection can cause extra travel delays in the 
pseudorange domain, thus causing the well-known mul-
tipath effects and non-line-of-sight (NLOS) receptions. 
Moreover, the uncertainty of the GNSS positioning is also 
greatly increased by severe NLOS conditions.

According to a recent survey [28], the NLOS is the domi-
nant component to blame for positioning errors in dense 
urban areas. Numerous studies [29]–[33] have been con-
ducted to identify NLOS receptions. Due to the fact that 
the NLOS is caused by reflection from buildings, 3D city 
models are employed to identify NLOS receptions [34]–[39]. 
With the aid of the 3D city models, the possible blockage 
from buildings can be detected, and the corresponding 
NLOS is obtained. The NLOS measurements are subse-
quently excluded from the GNSS positioning. However, 
this method relies heavily on the availability of the 3D city 
models, which is the main problem for its implementation. 
Range-based, 3D-map-aided GNSS [29], [31]–[33] is one of 
the most mature techniques to mitigate the positioning 
errors from NLOS receptions. It innovatively employs the 
ray-tracing simulation to represent the possible transmis-
sion routes of the GNSS signals. Thus, the travel delay can 
be calculated based on the simulated signal transmission 
route. The NLOS measurement is also corrected and used 
in the GNSS-positioning calculation. However, this method 
introduces a heavy computational load due to the ray-trac-
ing simulation. Moreover, 3D city models are also needed, 
and those map-aided GNSS-positioning methods rely heav-
ily on the initial guess of the receiver.

The other problem in GNSS–lidar integration is the 
large uncertainty of the GNSS positioning in urbanized ar-
eas. The uncertainty is referred to as the noise covariance, 
which is essential in the GNSS–lidar integration. Satisfac-
tory performance can be obtained using the GNSS–lidar 
integration scheme on the condition that each instance of 

FIG 1 (a) The performance of GNSS stand-alone positioning. The red 
circles indicate the GNSS-positioning result, and the black circles 
represent the ground truth. (b)The GNSS–lidar integration, where green 
points signify the point cloud map and pink circles denote the trajectory 
generated by the GNSS–lidar integration. The background image of  
Figure 1(a) is captured from Google Earth.
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sensor noise is well modeled. How-
ever, the research in [8]–[10] and 
[12] models the GNSS-positioning 
uncertainty as a Gaussian distri-
bution. This rough modeling of the 
GNSS-positioning uncertainty can 
work in places where the GNSS 
positioning is robust and accurate 
with few NLOS receptions. How-
ever, the GNSS-positioning error 
is not subject to Gaussian distri-
bution in urbanized areas [27]. Conventional constant, 
Gaussian distribution-based covariance cannot model the 
actual performance of the GNSS positioning. As a result, 
the GNSS–lidar integration result can introduce additional 
positioning errors.

A GNSS covariance-estimation solution based on satel-
lite numbers and the signal-to-noise ratio (SNR) can ob-
tain improvements [40] compared with the conventional 
constant covariance solution. However, this scheme can-
not effectively model the positioning error from the NLOS. 
Taking advantage of the 3D lidar sensor, the 3D point cloud 
map is employed to identify the NLOS measurement [41]. 
This method can effectively detect the NLOS signals, and 
it is similar to the techniques in [35] and [42], where 3D 
city models are used. The NLOS receptions are then ex-
cluded from the GNSS positioning. The point cloud map 
plays a role similar to that of 3D city maps. However, the 
implementation of this method is subject to the availability 
of a fully 3D point cloud map of buildings, which is diffi-
cult to obtain. Moreover, the GNSS positioning uncertainty 
is simply estimated based on the new horizontal dilution 
of precision (HDOP), and the actual NLOS errors are not 
 effectively modeled. Figure 2 presents a highly urbanized 
scenario in Hong Kong, where both sides of the street are 
lined with tall buildings. As a result, the GNSS receiver 
may obtain many NLOS measurements that contain only 
reflected signals.

This article innovatively employs 3D lidar to facilitate 
the GNSS positioning and the corresponding covariance 
estimation using real-time point-cloud-based object detec-
tion. Then, the improved GNSS positioning is integrated 
with lidar odometry in a graph-based SLAM framework. 
The flowchart of the GNSS–lidar integration solution is 
shown in Figure 3. First, the building boundary is detect-
ed by using the algorithm proposed in the previous work 
[43] of our research team. The point clouds are fixed to 
the GNSS frame based on the orientation obtained from li-
dar odometry (shown in Figure 3). The satellites and the 
building boundary are both projected to a GNSS skyplot 
[44]. Second, NLOS discovery is conducted with a proposed 
NLOS-detection algorithm. GNSS measurements that suf-
fer from both the NLOS and a low elevation angle are ex-
cluded based on a proposed fault-detection and exclusion 

(FDE) algorithm. Then the GNSS positioning is conduct-
ed using the surviving GNSS measurements. Third, the 
GNSS-positioning covariance is calculated by considering 
the potential location errors caused by NLOS and LOS re-
ceptions. Finally, the improved GNSS-positioning result 
and the corresponding covariance are integrated with the 
lidar odometry through a graph-based SLAM framework.

Lidar Odometry and Its Covariance Estimation

Lidar Odometry
The principle of lidar odometry [45] is to track the trans-
formation between two successive frames of point clouds 
by matching the two frames (called a reference point cloud 
and an input point cloud in this article). The matching pro-
cess is also called point cloud registration. The objective 
of point cloud registration is to obtain the optimal trans-
formation matrix to match or align the reference and input 
point clouds. The most well-known method of point cloud 
registration is the iterative closest point (ICP) [46]. The ICP 
is a straightforward approach to calculate the transforma-
tion matrix between two consecutive scans by iteratively 

FIG 2 GNSS NLOS receptions caused by surrounding buildings.
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The other problem in GNSS–lidar integration is the large 
uncertainty of the GNSS positioning in urbanized areas.  
The uncertainty is referred to as the noise covariance, which  
is essential in the GNSS–lidar integration. 
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searching pairs of nearby points in the two scans and mini-
mizing the sum of all point-to-point distances. The objec-
tive function can be expressed as follows [46]:

 ,, argmin Rp T qR TC
i

N

i i
1

2= + -
=

/t t^ ^h h  (1)

where N indicates the number of points in one scan p, and 
R and T designate the rotation and translation matrices, re-
spectively, to transform the input point cloud (p) into the ref-
erence point cloud (q). Objective function ,R TC t t^ h stands 
for the error of the transformation. The main drawback 
to this method is that the ICP can easily get into the local 
minimum problem. The NDT [47] is a state-of-art method to 
align two consecutive scans with models of points based on 
a Gaussian distribution. The NDT innovatively divides the 
point cloud space into cells. Each cell is continuously mod-
eled by a Gaussian distribution. In this case, the discrete 
point clouds are transformed into successive continuous 
functions. In this article, the NDT is employed as the point 
cloud registration method for lidar odometry. Assume that 
the transformation between two consecutive frames of point 
clouds can be expressed as .pose t t tx y z x y z

T
6 z z z= 6 @  

Here, ti  indicates the translation on the x-, y-, and z-axis, 
respectively, and xz  represents the orientation angle of the 

roll, pitch, and yaw, respectively. The steps to calculate the 
relative pose between the reference and input point clouds 
are as follows:
1) Fetch all the points xi n1f=  contained in a 3D cell [48]. 

Calculate the geometry mean .( / )q xn1 i iR=  Calculate 
the covariance matrix

 ( )( ) .x q x qn
1

i
i i

TR = - -/  (2)

2) The matching score is modeled as

 ,expp
x q x q

pf 2score i i

i

i
T

i
1

iR
=- = -

- --

/ l l^ ^ c ^ ^h h h h m  (3)

 where xi  indicates the points in the current frame of 
scan p, xil  denotes the point in the previous scan that 
is mapped from the current frame using ,pose6  and qi  
and iR  indicate the mean and the covariance of the cor-
responding normal distribution to point xil  in the NDT 
of the previous scan.

3) Update the pose using the quasi-Newton method based 
on the objective function to minimize the score .pf ^ h
With all points in one frame of point clouds being mod-

eled as cells, the objective of the optimization for the NDT 

FIG 3 The proposed GNSS–lidar integration method. Three parts are included: (a) GNSS positioning and its covariance estimation, (b) lidar odometry and 
its covariance estimation, and (c) graph-based optimization. NDT: normal distribution transform.

Points
Segmentation

Surface
Identification

Surface
Extension

Projection of 
Building 

Boundary to 
Skyplot

getHeight

Building-
Height List 

3D
Lidar

GNSS 
Receiver

NLOS Detection

NLOS
Exclusion

GNSS PositioningGNSS Covariance

Filtering

3D
Lidar

NDT

GNSS
Positioning

GNSS
Covariance

Lidar
Odometry

Graph
Optimization

Lidar 
Odometry 
Covariance

Loop
Closure

(a) (c)

(b)

Pt
Pt

Ot
org

Ut
seg

Ht

Pt
Fused

Pt
Fused

Bt
seg_buil

Bbuild
skyp

SVt
healthy

SVt
all

SVt
NLOS

SVt
surviving

Pt
Filter

Ωi, j

Pt
ENU

RG

pose6

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 25,2023 at 09:00:40 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  57  •  FALL 2020IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  56  •  FALL 2020

is to match the current cells to the previous cells with the 
highest probability. The optimization function pf ^ h can 
be found in [47]. In each cell that contains several points, 
the corresponding covariance matrix can be calculated 
and represented by .R  The shape of the cell (circle, plane, 
or linear) is indicated by the relationship among the three 
eigenvalues of the covariance matrix [47]. In this case, 
compared with the conventional ICP algorithm, the NDT 
innovatively optimizes the transformation by considering 
the features of the points. The loop-closure detection is 
conducted based on these shape features [49].

Covariance Estimation of Lidar Odometry
Lidar odometry can provide a continuous relative pose es-
timation, .pose6  The associated covariance of this pose 
estimate is essential for the later integration with the 
GNSS positioning. During the NDT process, the covari-
ance of the pose estimation is related to the uncertainty of 
the matching between the reference and the input point 
clouds. In graph-based optimization, which will be in-
troduced in the “Graph-Based GNSS–Lidar Integration” 
section, the covariance is indicated as the inverse of the 
information matrix .ijX  In each matching process be-
tween a point from the reference point cloud and a point 
from the input point cloud, we model the degree of match-
ing as

 ,dm n x y z1
ij

k

n

k k k
1

2 2 2T TT= + +
=

/  (4)

where dmij  represents the degree of matching between 
the reference and input point clouds, n denotes the num-
ber of points in the input point cloud, xkT  indicates the 
positional difference on the x-axis between input and ref-
erence points after the convergence of NDT is obtained, 
and ykT  and zkT  indicate the positional differences on the 
y- and z-axis, respectively. Thus, the information matrix 

ijX  of the degree of matching between the reference and 
the input can be expressed as

 ,
0

0
ij

ij
p

ij
rX

X
X

= = G  (5)

 ,/I C dmij
p

p ij
2X = ^ h  (6)

 / ,I C dmij
r

r ij
2X = ^ h  (7)

where I indicates the identity matrix and Cp
2  is a coefficient 

that is heuristically determined. In this case, the covari-
ance for lidar odometry is correlated with the degree of 
matching. We can see from Figure 2 that lidar matching 
can obtain a relative pose estimate on the lateral direction 
crossing the building. However, the longitudinal pose esti-
mate is not as accurate because the building surface tends 
to be plain and featureless. Thus, the covariance should be 

adaptively changed according to the degree of matching in 
different scenarios.

Object-Detection-Aided GNSS Positioning 
and Its Covariance Estimation
In this section, the detection of a building boundary is first 
presented. The NLOS FDE method is subsequently dis-
cussed. Then, the GNSS positioning is implemented based 
on the NLOS FDE. Finally, the innovative covariance esti-
mation of the GNSS positioning is introduced.

Building-Boundary Detection
To identify which satellite is blocked by the surrounding 
buildings, the pose of the building boundaries relative to 
the GNSS receiver is needed. Since 3D lidar can provide 
sufficient points that represent the environment, our previ-
ous work in [43] presents the detection of a double-decker 
bus and a dimension-extension algorithm founded on li-
dar-based object detection. Building-boundary detection is 
based on a similar approach, described as follows:
1) Segment the point clouds into clusters to represent dif-

ferent objects.
2) Identify the building surface and extend its dimensions 

to the actual measurements by using Algorithm 1.
3) Obtain the bounding box that indicates the building 

surface, and find the corresponding top boundary.
4) Calculate the pose of the building relative to the GNSS 

receiver.
The inputs of Algorithm 1 are U t

seg  and ,Ot
org  which are 

obtained from the segmentation based on the work in [43]; 
the point number threshold ;numthres  the length threshold 
lenthres  and height threshold ;heithres  the building-height 

Input: Bounding box sets , , , , , ,U U U U U tt i n1 2
seg

f f= " ,  organized point 
clusters , , , , , ,O O O O O tt i n1 2

org
f f= " ,  point number threshold ,num thres

length threshold ,len thres  height threshold ,hei thres  building-height list ,H build  
receiver position ,P t

fused  and yaw angle .Yaw r

Output: Bounding box set represents building surfaces 
, , , , , .B B B B B tt i n1 2

seg_buil
f f= " ,

1 set up an empty-clusters list B t
seg_buil  to save to the bounding box

2 for all bounding boxes U i  in U t
seg  do

3  if ( )O numNum i thres2

4    , , , , , , , ,U x y z roll pitch yaw d d di i
c

i
c

i
c

i
c

i
c

i
c

i i i
len wid hei

! 6 @
5    if d leni

len
thres2  and d heii

hei
thres2

6     ( , , , )H P Ud getHeight Yawi t i r
hei

build
fused!

7     UB i i!

8    end if
9   end if
10 end for U t

seg

Algorithm 1. Building-surface identification from bounding box 
sets and height extension.
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list ;Hbuild  the receiver position ;P t
fused  and the yaw angle 

Yaw  r  from the GNSS–lidar integration. The output is 
the bounding box set ,Bt

seg_buil  which specifically repre-
sents the building surface. Each bounding box is indicated 
by , , , , , , , , .U x y z roll pitch yaw d d di i

c
i
c

i
c

i
c

i
c

i
c

i i i
len wid hei= 6 @  The 

function Num mentioned in Algorithm 1 is used to calcu-
late the points number of each cluster .Oi  The function 
getHeight  is employed to search the information in a saved 
building-height list that contains rough data. To determine 
the actual height of the identified building surface, ,P t

fused  
,Ui  and Yawr  are also needed. Here, P t

fused  indicates the 
GNSS position given by the previous epoch-positioning re-
sult, which was obtained from the GNSS–lidar integration. 

The relative position between the GNSS receiver and the 
detected building can be obtained from .Ui  Moreover, the 
yaw angle can be acquired from the GNSS–lidar integra-
tion. For each bounding box ,Bi  the distance ia  from the 
receiver to the detected building surface can be calculated 
as follows:

 .x y zi i
c

i
c

i
c2 2 2

a = + +^ h  (8)

Thus, the bounding box with an extended height that 
represents the building surface can be identified using 
Algorithm 1. The bounding box is extended from rectan-
gle ABCD to CDEF, as seen in Figure 4. Bounding boxes 
ABCD and CDEF indicate the initially detected dimensions 
and the extended dimensions of the building, respective-
ly. Then, the boundary parameters for bounding box ,Bi  
which corresponds to the building surface, are indicated 
by the line segment ,EF  which is the bus-boundary matrix 
and denoted .B d3

build  To represent the building, two points, 
E and F, are required. The ,B d3

build  which is relative to the 
lidar coordinate system, is structured as follows:

 .B
x
x

y
y

z
z

d

F F F

3
build

3

3

3

3

3

3

dE

d

dE

d

dE

d
= ; E  (9)

In this case, the top boundary of the building is detected, 
and it will be used for the NLOS detection in the follow-
ing section. The distance between the receiver and the 
building surface is calculated as ,ia  which will be used for 
the covariance estimation of the GNSS positioning in the 
“GNSS-Positioning Covariance Estimation” section.

NLOS Detection and Exclusion
The boundary of the building is detected as .B d3

build  The 
satellites and the building boundary can be projected into 
a GNSS skyplot, which is shown in Figure 5. The circles 
indicate the satellites, and the associated number rep-
resents the satellite index. The yellow line describes the 
building boundary projected into the skyplot. The NLOS 
is indicated with a red circle in Figure 5. Assume that the 
initial satellite set is ,, , , ,SV SV SV SV SVt i s1 2

all f f= " ,  
where , , , ;SV az el SNRi i i i it= " ,  azi  and eli  denote the 
azimuth and elevation angles of a satellite, respectively; 
SNRi  indicates the satellite SNR; and it  denotes the pseu-
dorange measurement. The satellite visibility classifica-
tion based on the satellite information and boundaries is 
introduced in the previous work [50] of our research team. 
According to Figure 5, we can have two satellite sets. 
One is , , , , ,SV SV SV SV SVt i n1 2

nlos f f= " ,  which contains 
only the NLOS satellites. The other is the LOS satellite set 

,, , , ,SV SV SV SV SVt i l1 2
los ff= " ,  and s n l= +  is satisfied.

We can see from the skyplot in Figure 5 that half the 
satellites are blocked (six out of 12). Essentially, only the 
satellites with an elevation angle of more than 72º are 
not blocked. The exclusion of all NLOS receptions can 

FIG 4 The point sets segmentation and building surface identification. 
Blue box ABCD represents the initially detected building surface. Blue box 
CDEF signifies the extended building surface.
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result in a significant increase in the HDOP, which will 
magnify the pseudorange errors in the GNSS position-
ing. In other words, full exclusion of the NLOS receptions 
will conversely deteriorate the GNSS-positioning result. 
In previous work, we analyzed NLOS errors in [27]. The 
pseudorange error is smaller, while the elevation angle is 
higher, and the distance from the GNSS receiver to the re-
flector is smaller (refer to ia  in Figure 2). In other words, 
an NLOS with a lower elevation angle can introduce a 
larger GNSS-positioning error. The relationships between 
the satellite elevation, ia  and the pseudorange error are 
presented in [27].

Inspired by this result [51], this article proposes to ex-
clude the measurement based on the satellite elevation 
angle and the HDOP of the satellite distribution. The pro-
posed satellite-exclusion method is shown in Algorithm 2. 
The inputs of the algorithm include the NLOS satellite _
information sets , , , ,SV SV SV SV SVt i n1 2

nlos f f= " , and 
.SV t

los  Only the satellites blocked by buildings are con-
tained in satellite set SV t

nlos  (for example, satellites 8, 17, 
28, 22, 30, and 39 shown in Figure 5). The thresholds for 
the elevation angle and the HDOP are also inputs to Algo-
rithm 2. The output of Algorithm 2 is the satellite set that 
remains after the NLOS-exclusion process, indicated 
by , , , , .SV SV SV SV SVt

s s
i
s

m
s

1 2
los_nlos f f= " ,  After the pro-

posed NLOS exclusion, some of the NLOS measurements 
that have low elevation angles are omitted. The surviv-
ing NLOS and LOS measurements are saved in .SV t

los_nlos  
This satellite set is incorporated in the GNSS positioning 
through the weighted least-squares (WLS) method that is 
discussed in the following section.

GNSS WLS Positioning
Satellites in SV t

los_nlos  are employed for the GNSS-position-
ing calculation. The system clock bias between the GNSS 
receiver and the satellites is contained in the pseudorange 
measurements. The equation linking the receiver position 
and the range measurements can be structured as the fol-
lowing least-squares method:

 ( )x G G G ,T T1 t= -t  (10)

where G represents the observation matrix and is struc-
tured by unit LOS vectors between the GNSS receiver’s 
position and the satellite’s position. Here, xt  indicates the 
estimated receiver position, and t  denotes the pseudor-
ange measurements.

Conventionally, to better represent the reliability of each 
measurement based on the information from the receiver, 
weightings of each computation are needed. The function 
to calculate the weighting by integrating the measurement 
SNR and the satellite elevation angle is expressed as W [52]. 
Finally, the GNSS receiver position can be estimated using 
the WLS method:

 ( )x G WG G W .T T1 t= -t  (11)

In this article, the GNSS-positioning result is represented 
as P x y zt E N u

ENU = 6 @ in the East, North, Up (ENU) coor-
dinate system [53].

GNSS-Positioning Covariance Estimation
The GNSS uncertainty is usually modeled by considering 
the SNR, satellite numbers, and HDOP if the NLOS sat-
ellites are not identified [40]. This rough modeling can 
work only in open-sky environments where there are few 
NLOS receptions. A team from the University of Illinois 
[42] proposed to model the GNSS-positioning uncertainty 
based solely on the SNR [42] after identifying and exclud-
ing the NLOS receptions. However, full NLOS exclusion is 
not acceptable in superurbanized areas, as it can result 
in a significant increase in the HDOP. In this article, we 
propose to model the covariance matrix of the GNSS po-
sitioning, which consists of two parts, the NLOS and the 
LOS, as follows:

 .R R RG C E= +  (12)

Here, RC  is the covariance matrix that indicates the un-
certainty of the GNSS positioning, with the assumption that 
all satellites used for positioning in SV t

los_nlos  are LOS; it is 
calculated as follows:

 ,R HDOP
1
0

0
1C xy

2
UEREv= c m  (13)

where UEREv  indicates the user-equivalent range error, 
which is experimentally determined in this article, and 
HDOPxy  is the HDOP of the GNSS positioning.

Input: Satellite information set , , , , ,SV SV SV SV SVt i n1 2
nlos f f= " ,  

, , , , ,SV SV SV SV SVt i l1 2
los f f= " ,  elevation angle threshold ,el threshold  

HDOP threshold .H thres

Output: Corrected satellite set after NLOS exclusion: 
, , , , .SV SV SV SV SVt

s s
i
s

m
s

1 2
los_nlos f f= " ,

Step 1:  sort the satellites set in SV t
nlos  based on the elevation angle from small 

to large.
Step 2:  exclude satellite SVi  from SV t

nlos  if:
 •  its elevation angle is smaller than el threshold

 •  the HDOP of the remaining satellites (including the remaining 
satellites in SV t

nlos  and the satellites in )SV t
los  is smaller than the 

HDOP threshold .H thres

Step 3:  repeat step 2 until all the conditions in step 2 cannot be fully satisfied.
Step 4:  save the remaining satellites in SV t

nlos  and SV t
los  to 

, .SV SV SVt t t
los_nlos nlos los= " ,

Algorithm 2. The proposed NLOS exclusion.
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In addition, RE  is the covariance matrix that indicates 
the extra uncertainty of the GNSS positioning that is caused 
by the NLOS. It is calculated as follows:

 ,R HDOP
1
0

0
1E xy

2
NLOSv= c m  (14)

where NLOSv  indicates the extra uncertainty caused by the 
NLOS receptions. According to [27], the pseudorange er-
ror for each NLOS measurement can be roughly modeled 
as follows:

 ,sec cos sec cos1 2 1 2elc elc azm azmc a i i i i= + + +^ ^ ^h hh  (15)

where a  represents the distance between the GNSS re-
ceiver and the reflector and is obtained from the surface 
detection presented in the “Building-Boundary Detection” 
section. Here, elci  and azmi  represent the elevation and the 
azimuth angles, respectively. Thus, we can obtain the total 
uncertainty of pseudorange NLOSv  for all satellites (totaling 
k satellites) as follows:

 .
i

k

i
1

NLOSv c=
=

/  (16)

In this case, the GNSS-positioning covariance is cal-
culated by considering both the LOS and the NLOS mea-
surements. The component that must be estimated in the 
matrix RG  is

 .R HDOP HDOPxy xy
2 2
NLOS UEREv v= +r  (17)

Moreover, only the covariance in the horizontal direction is 
obtained. In superurbanized areas, the vertical dilution of 
precision is significantly larger than the HDOP. The posi-
tioning error in the vertical direction can be very bad due 

to the distorted vertical distribution of the satellites. Thus, 
only the horizontal GNSS positioning and the corresponding 
covariance are used in the proposed GNSS–lidar integration.

Graph-Based GNSS–Lidar Integration
This section presents graph-based GNSS–lidar integration. 
The purpose of the pose graph optimization is to construct 
all measurements into a graph as constraints and calcu-
late the best set of poses by solving a nonlinear optimiza-
tion problem. In this article, the constraints are provided 
by both the object-detection-aided GNSS positioning and 
the lidar odometry. Two steps are needed to implement the 
graph-based GNSS–lidar integration optimization: graph 
generation and graph optimization.

Graph Generation
The graph is constituted by edges and vertexes [26]. Edges 
are provided by the observation measurements, includ-
ing the GNSS and the lidar, as shown in Figure 6. Here, 
xi  represents the 6D pose estimation that includes the po-
sition and the orientation, eij  indicates the error function 
that evaluates the difference between the estimated state 
and the observation from the sensors, and zij  represents 
the observation. In the graph optimization, xi  is the state. 
The observations include three parts: the measurements 
from the GNSS, the loop closure, and the lidar positioning 
presented in the “Lidar Odometry and Its Covariance Es-
timation” and “Object-Detection-Aided GNSS Positioning 
and Its Covariance Estimation” sections, respectively. Blue 
circles and red lines represent the nodes and the edges, 
respectively, which are provided by the globally referenced 
GNSS positioning. Red circles and blue lines indicate the 
nodes and the edges respectively, which are provided by 
lidar odometry. The black line indicates the edge provided 
by the loop closure. The error function for GNSS observa-
tion is expressed as follows:

 ,e x zhi i i i
2GNSS GNSS= - X^ h  (18)

where hi )^ h  is the measurement function that relates 
the GNSS measurement zi

GNSS  to the state ,xi  and X  is 
the covariance matrix of the corresponding observa-
tion measurement.

Lidar odometry can provide a continuous 6D pose esti-
mate and the corresponding covariance. The error func-
tion for lidar odometry is expressed as

 ,e x x zi i i i1
2LiDAR LiDAR= - - X-  (19)

where the zi
LiDAR  is the measurement from lidar odometry. 

The loop closure can be detected when the vehicle passes 
a similar or neighboring area again. The error function for 
the loop closure is expressed as

FIG 6 A demonstration of graph generation based on GNSS and lidar 
positioning.
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 ,e x x z,i j i j i
2loop loop

= - - X  (20)

where the zi
loop  is the measurement from the loop closure.

Only 2D horizontal positioning and the corresponding 
covariance are provided by the GNSS positioning in this 
article. The GNSS-positioning error can go up to −50 m in 
superurbanized areas. Since the covariance of the GNSS po-
sitioning is reasonably estimated by considering the NLOS 
and LOS receptions, we propose to add the GNSS results 
to the graph (shown in Figure 6) only when the Rr  of the 
GNSS positioning is smaller than a threshold .Rthreshold In 
this case, only the GNSS measurement that has a small cova-
riance is applied to the graph optimization for providing the 
globally referenced update. This exclusion can prevent the 
severely biased GNSS-positioning result from being applied 
to the graph. The graph generation is shown in Algorithm 3.

Compared with conventional graph-based GNSS–lidar 
integration, this article innovatively adds the improved 
GNSS results and the corresponding covariance to the graph 
optimization. The effectiveness of this novelty is subject to 
the performance of the uncertainty estimation of the GNSS 
positioning, which is introduced in the “GNSS-Positioning 
Covariance Estimation” section.

Graph Optimization
Graph optimization [54] is a straightforward procedure that 
combines all constraints into a nonlinear optimization prob-
lem. The optimization form is

 
,

z x x z

x x z

xF hx
,i j

i i i i i i

i j i

2
1

2

2

GNSS LiDAR

loop

= - + - -

+ - -

X X

X

-/^ ^h h
 

(21)

where F x^ h is the optimization function, which is the sum 
of the errors of all edges, and ijX  is the information ma-
trix that indicates the importance of each constraint in the 
global graph optimization. The information matrix is the 
inverse of the covariance matrix. The final solution to this 
optimization is x)  (the 6D pose estimate), which satisfies 
the following function:

 .x xFargmin=) ^ h  (22)

Thus, the optimization lies in solving the preceding equa-
tion to obtain the optimal x .)  We can see from the optimi-
zation form xF ^ h that the covariance of the GNSS and the 
lidar odometry positioning results are reflected in .X  If 
the covariance of each positioning result is not properly es-
timated, the global optimization will be deflected, result-
ing in erroneous final pose sets.

Experimental Evaluation
To evaluate the performance of the GNSS–lidar integration 
method proposed in this article, two experiments are pre-
sented. The performance of stand-alone lidar positioning 

in diverse urban scenarios is extensively evaluated in pre-
vious work [55] by our research team. In this section, GNSS 
positioning results are presented first. Then, the GNSS-
lidar integration experiment results are analyzed.

Experimental Setup
Two experiments are conducted in Hong Kong. The first 
is implemented in a narrow street with buildings on both 
sides, which can be seen in Figure 7. Both sides of the 
road are lined with buildings, and the distance between 
the structures is just 7~10 m (see Figure 7). The experi-
ment is conducted with an open-loop route. The other trial 

Input: GNSS results z i
GNSS  and the corresponding covariance R .ir  Lidar 

odometry observation z i
lidar  and loop closure .z i

l poo

Output: Graph of nodes and vertexes.

Step 1:  Initialize the estimated state using the GNSS results.
Step 2:  Add the observation z i

lidar  from the lidar odometry to the graph if any 
of the following conditions are satisfied:

 •  the translation between the current lidar odometry and the previous 
node in the graph overweigh .Tran threshold

 •  the rotation between the current lidar odometry and the previous 
node in the graph overweigh .Rot threshold

Step 3:  Add the observation of the GNSS results to the graph if
 •  the value R ir  is smaller than .R threshold

Step 4:  Add the observation z i
loop  from the loop closure to the graph if the 

loop closure is detected.
Step 5:  Repeat steps 2 and 3 until the end.

Algorithm 3. The proposed graph generation.

FIG 7 GNSS and lidar sensors are installed on the top of the vehicle.
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is conducted with a closed-loop route, and loop closure is 
available for the GNSS–lidar integration. The objective of 
this closed drive is to certify that the proposed GNSS–lidar 
integration solution is repeatable in diverse scenarios and 
that the overall performance can be well enhanced with 
the aid of loop closure.

In both experiments, a u-blox M8T receiver is used to 
collect raw GPS and BeiDou measurements. A 3D lidar sen-
sor (Velodyne 32) is employed to provide the real-time point 
clouds scanned from the surroundings. Both the u-blox re-
ceiver and the 3D lidar are installed on the top of a vehicle, 
which can be seen in Figure 7, during the experiment. The 
data were collected during an approximately 5-min drive, 
at a frequency of 1 Hz for the GNSS and 10 Hz for the 3D li-
dar, using Robot Operation System [56] time to synchronize 
all the sensor information. The sensor setup and the cor-
responding coordinate system are shown in Figure 7, with 
the x-axis (the lidar coordinate system) pointing to the back 
of the vehicle. The GNSS positioning is represented through 
the ENU reference system. The initial position of the ex-
periment is employed as the initial position calculation of 
the ENU coordinates. Moreover, the lidar coordinates are 
shown in Figure 7 and calibrated [55] with the GNSS in the 
ENU [57] coordinates at the beginning of the experiment. 
In addition, a NovAtel SPAN-CPT integrated GNSS–inertial 
navigation system (fiber optic gyroscopes) is used to provide 
the ground truth trajectory with decimeter-level accuracy.

Experimental Evaluation Using Data Collected  
With Open-Loop Route

GNSS-Positioning Evaluation
The GNSS positioning is evaluated by comparing the WLS-
based GNSS positioning with the GNSS positioning aided 

by NLOS exclusion. The result of 
the GNSS positioning (two dimen-
sions) using different methods are 
listed in Table 1. If all NLOS recep-
tions are excluded from the GNSS 
positioning, the outcome is shown 
in the third column. The result 
obtained by the proposed NLOS-
exclusion method in Algorithm 2  

(WLS–NE) is shown in the fourth column. Due to the 
blockage from tall buildings, the majority of the measure-
ments are NLOS.

The conventional WLS method can obtain 29.81 m of 
mean error. The error magnitude is much larger than the 
positioning error in [36], where the experiment is con-
ducted in less urbanized areas. The standard deviation is 
21.09, and the availability is 100% during the test. With the 
exclusion of all NLOS measurements, the GNSS position-
ing is even worse. The mean of its positioning error goes 
up to 30.25 m, and the standard deviation also slightly 
increases. Moreover, the availability of this solution de-
creases to 97.45%. This result shows that the exclusion 
of all NLOS measurements may not improve the overall 
performance in highly urbanized areas. This is due to the 
distortion of the satellite’s geometric distribution; namely, 
a larger HDOP occurs. With the proposed method shown 
in Algorithm 2, the mean positioning error slightly im-
proves from 29.81 to 27.09 m. Moreover, the availability of 
the GNSS solution is guaranteed (100%). The improvement 
is not too large because of the excessive NLOS receptions 
in the tested scenario.

The satellite numbers and the GNSS–positioning re-
sults are shown in Figure 8. The green curve represents 
the number of satellites when all NLOS receptions are 
excluded. The blue curve indicates the satellite number 
based on the proposed NLOS-exclusion algorithm (Algo-
rithm 2). The satellite number can be reduced to fewer 
than five if all NLOS receptions are excluded, which can 
be seen in Figure 8(a). Due to the frequent NLOS exclu-
sion based on Algorithm 2, the satellite number is slightly 
lower compared to the red curve. Only part of the identi-
fied NLOS is excluded; using Algorithm 2 can guarantee 
that there are enough satellites for the GNSS-positioning 
calculation. As shown in Figure 8(b), the proposed NLOS 
exclusion can introduce improvements sometimes instead 
of all the time. This is because there are too many NLOS 
receptions, and exclusion can also enlarge the HDOP in 
some ways.

The result of the covariance estimation based on the 
proposed method in the “GNSS-Positioning Covariance 
Estimation” section appears in Figure 9. The black dots 
represent the GNSS-positioning error using the WLS–NE 
method. This is the value that the estimated covariance 
was expected to approach. The red dots represent the 

All Data
Conventional: 
WLS

WLS–NE–A 
(Excluding 
all NLOS)

WLS–NE–P 
(Partially Excluding 
the NLOS)

Mean error 29.81 m 30.25 m 27.09 m

Standard deviation 21.09 m 22.28 m 19.6 m

Availability 100% 97.45% 100%

Table 1. The performance of the three GNSS-positioning 
methods (2D positioning).

The GNSS  positioning is evaluated by comparing the WLS-
based GNSS positioning with the GNSS positioning aided by 
NLOS exclusion.
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conventional GNSS covariance estimation based on the 
method in [41] ).(RC  This approach cannot model the 
NLOS error caused by signal reflection. We can see from 
Figure  9 that this covariance estimation slightly fluctu-

ated due to the change in the HDOP. However, this covari-
ance is far from the black dots. The blue dots symbolize 
the proposed GNSS-positioning covariance estimation 
result based on ,Rr  as shown in (17). This covariance is 

FIG 8 Experiment 1: the experimental results of the WLS and the WLS–NE, which are depicted in red dots and blue dots, respectively. (a) The number of 
satellites used. (b) The 3D positioning errors.
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FIG 9 Experiment 1: (a) The number of satellites used in the conventional and the proposed GNSS-positioning methods. (b) The corresponding estimated 
covariance. The conventional and proposed covariance estimations are indicated in red and blue dots, respectively. The GNSS-positioning error when 
using the WLS–NE is represented by black dots (ground truth for covariance).

0 50 100 150 200 250
Epoch (s)

(a)

0 50 100 150 200 250
Epoch (s)

(b)

0

5

10

15

N
um

be
r 

of
 S

at
el

lit
es

0

50

100

V
al

ue
 (

m
)

Ground Truth
Conventional
Proposed

Conventional
Proposed

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 25,2023 at 09:00:40 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  65  •  FALL 2020IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  64  •  FALL 2020

closer to the black dots (refer to the ground truth of the 
covariance) compared with that of the conventional co-
variance. As shown in Figure 9, the proposed covariance 
can effectively model the GNSS-positioning error in some 
epochs, especially when then GNSS-positioning error is 
smaller. However, some epochs encounter a large differ-

ence between the estimated covariance and the actual po-
sitioning error. This is because the proposed method can 
identify only the NLOS near the vehicle, which is within 
the detection range of the 3D lidar (commonly 120 m). 
The NLOS that is reflected too far from the vehicle is not 
modeled by the proposed covariance-estimation method. 
Moreover, the multipath effects are also not modeled in 
this covariance-estimation method.

GNSS–Lidar Integration Evaluation
The trajectory of the tested vehicle is shown in Figure 10. The 
red circles represent the GNSS-positioning results using the 
proposed WLS–NE method. The green curve  indicates the 
ground truth of the tested trajectory. We can see from the 
figure that the majority of the epochs possess a large po-
sitioning error. In the GNSS–lidar integration, the GNSS is 
the only source that can provide absolute positioning infor-
mation. The SLAM graph generation is shown in Figure 11, 
which indicates the organized point cloud, nodes, and edges 
for further graph-based optimization.

As we can see from Figure 8, the WLS–NE-based GNSS-
positioning solution can still reach 54 m. In this section, 
three GNSS–lidar integration methods are compared:

 ■ Method A: GNSS–lidar integration with conventional 
GNSS covariance estimation [41]

 ■ Method B: GNSS–lidar integration with the proposed 
GNSS covariance estimation

 ■ Method C: GNSS–lidar integration with the proposed 
GNSS covar iance est imat ion; however, the GNSS 
positioning is integrated into the graph optimiza-
t ion only when Rr  is smaller than the threshold

.Rthreshold

The GNSS–lidar integration results  are given in 
Table 2 using the three methods. The mean error of the 
conventional GNSS–lidar integration is 24.07 m, and it 
is improved compared to the performance of the GNSS 
alone (27.09 m). With the aid of the proposed GNSS-po-
sitioning covariance (method B), the error of the GNSS–
lidar integration is slightly decreased to 22.67 m. The 
standard deviation is also slightly smaller. In method 
B, all GNSS-positioning results and the corresponding 
covariance are applied in the GNSS–lidar integration. 
Since the majority of the GNSS positioning is erroneous, 
it is reasonable to use the GNSS results when they are 
accurate. Accurate results can be identified when the 
estimated covariance is less than .Rthreshold  Dramatic im-
provement is obtained after the covariance constraint is 
applied. The mean error and the standard deviation are 
lessened to 12.67 and 6.57 m, respectively. Moreover, the 
availability of all three methods is 100%. This improve-
ment shows that the proposed covariance estimation can 
improve the performance of the GNSS–lidar integration. 
The GNSS–lidar integration results are shown in Figure 12. 
Compared to the Bayes filter-based [13], [14] sensor-fusion 

54 m

107 m

160 m

FIG 10 Experiment 1: the trajectory of the autonomous vehicle is indicated 
by the green curve, and the red circles convey the GNSS-positioning result. 
The background image of Figure 10 is captured from Google Earth.

Node From Lidar

Edge From Lidar

Edge From GNSS

FIG 11 Graph generation in the real graph–SLAM process.

All Data

Method A
Conventional 
GNSS–Lidar 
Integration

Method B
Proposed 
GNSS–Lidar 
Integration

Method C
Proposed GNSS–
Lidar Integration 2

Mean error 24.07 m 22.67 m 12.67 m

Standard deviation 14.69 m 14.48 m 6.57 m

Availability 100% 100% 100%

Table 2. Experiment 1: The performance of the three GNSS–lidar 
integration methods.
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method, the graph-based GNSS–lidar integration takes 
all constraints into the optimization framework. Thus, 
the poses of the organized point clouds, nodes, and edg-
es changed through time. Examining Figure 12, we can 
conclude that
1) Proposed method C obtained the most accurate trajec-

tory among the three methods.
2) The positioning error decreased near the end of the drive, 

meaning that GNSS–lidar integration can mitigate the 
drift of the lidar odometry.

The GNSS–lidar integration error is presented in Figure 13. 
We can see from the figure that method C outperforms the 
other two through the majority of the epochs.

Previous research [10], [40] tends to integrate the GNSS 
and lidar in a scenario where the GNSS-positioning error 
is less than 5~8 m, using the GNSS WLS. In this test sce-
nario, the GNSS results with an enormous error are ap-
plied to the GNSS–lidar integration, which is very common 
in superurbanized cities, such as Hong Kong.

Experimental Evaluation Using Data Collected  
With Closed-Loop Route

GNSS-Positioning Evaluation
This experiment is conducted in a superurbanized area 
where fewer satellites are visible compared to the first 
experiment. Moreover, this experiment route is a closed 
loop. Loop-closure [49] detection is employed in the GNSS–
lidar integration process in this experiment. The ex-
periment scene is shown in Figure 14. The height of the 
buildings is roughly 30 m, and the distance between the 
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FIG 13 Experiment 1: the positioning error of the GNSS–lidar integration 
results obtained through the three methods. The red, green, and blue 
curves indicate GNSS–lidar integration methods A, B, and C, respectively.

(a) (b) (c)

FIG 12 (a)–(c) Experiment 1: the results of the GNSS–lidar integration based on three integration methods. The blue curve consists of the optimized nodes 
(refer to the red node in Figure 6). The black curve indicates the ground truth of the trajectory provided by the NovAtel SPAN-CPT. The red line represents the 
edge from the GNSS positioning (refer to the red line in Figure 6). The green points show the organized point clouds.

Zoom Out

29 m

109 m

43 m

FIG 14 Experiment 2: the trajectory of the vehicle is indicated by the 
green curve, while the red circles denote the object-detection-aided 
GNSS-positioning results. The background image is captured from 
Google Earth.
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structures is approximately 8 m. We can see from the 
figure that the majority of the GNSS-positioning results 
are located inside the buildings due to multipath effects 
and excessive NLOS receptions. Again, the mean error 
is slightly reduced from 46.62 m (conventional WLS) to 
43.12 m (proposed WLS–NE).

The covariance-estimation result of the proposed meth-
od is provided in Figure 15. Compared with the covariance 
estimation in the first experiment, presented in Figure 9, 
the covariance is estimated better in this experiment. The 
main reason is that the majority of the satellites are NLOS 
due to the tall buildings, which means fewer multipath  effects. 
As discussed earlier, multipath is not modeled in the pro-
posed covariance-estimation method. In other words, the 

proposed GNSS-positioning covariance-estimation method 
can obtain better performance in narrower streets.

GNSS–Lidar Integration Evaluation
The GNSS–lidar integration performance is shown in 
Table 3. Loop-closure detection is applied in this experi-
ment, as the driving route is a closed loop, shown in Figure 
14. The conventional solution obtains a mean positioning 
error of 25.68 m, with a standard deviation of 28.09 m. With 
the assistance of the proposed covariance estimation, the 
mean positioning error drastically decreased to 8.14 m. 
The mean positioning error is reduced to 7.49 m with the 
covariance-magnitude constraint applied. Moreover, the 
standard deviation is also smaller, at 5.43 m.

The final optimized nodes and the organized point clouds 
are in Figure 16. The positioning error during the test is 
given in Figure 17. We can see from Figure 16 that the 
edges of the GNSS are dramatically decreased with the 
application of the covariance constraint. Interestingly, 
the positioning error of all the methods decreased after 
120 epochs. The reason is the detection of the loop closure, 
which is a strong constraint for further graph-based opti-
mization. Regarding the performance of the conventional 
GNSS–lidar integration with no loop closure in the first 
 experiment, the positioning error can still reach roughly 
40 m at the end of the test.
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FIG 15 Experiment 2: (a) the number of satellites used in the conventional and proposed GNSS-positioning methods. (b) The corresponding estimated 
covariance. The conventional and proposed covariance estimations are indicated by red and blue dots, respectively. The GNSS-positioning error obtained 
through the WLS–NE is shown as black dots (ground truth for covariance).

All Data

Method A
Conventional 
GNSS–Lidar 
Integration

Method B
Proposed 
GNSS–Lidar 
Integration

Method C
Proposed GNSS–
Lidar Integration 

Mean error 25.68 m 8.14 m 7.49 m

Standard deviation 28.09 m 6.73 m 5.43 m

Availability 100% 100% 100%

Table 3. Experiment 2: The performance of the three GNSS-lidar 
integration methods.
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Discussion
The proposed GNSS–lidar integration method obtained 
improved performance with the aid of NLOS exclusion (em-
powered by lidar-based object detection) and the proposed 
covariance estimation. The proposed NLOS exclusion 
can obtain improvements when more satellites are avail-
able. Though the positioning performance of the GNSS is 
very unsatisfactory during both of the experiments, the 
GNSS is still indispensable for providing globally refer-
enced positioning.

The proposed covariance estimation can capture the 
majority of the GNSS-positioning errors. However, the 
GNSS-positioning error caused by the multipath effect 
cannot be modeled using the proposed covariance mod-
el. In the first experiment, the mean GNSS-positioning 
error is less than 30 m, which is better than in the sec-
ond experiment. This is because the buildings in the 
second experiment are even taller, which introduces 
more NLOS receptions. As presented in Algorithm 2, 
only the NLOS is modeled in the covariance. Thus, the 
second experiment obtains better performance regard-
ing the GNSS-covariance estimation, which can be seen 
by comparing Figures  9 and 15. The multipath effects 
are random and difficult to model; thus, effectively rep-
resenting  multipath is promising work to pursue. The 
proposed covariance constraint applied to GNSS–lidar 
integration can improve performance. This novel con-
straint guarantees that only the accurate GNSS position-
ing will be applied to the integration. In other words, 
effectively estimated covariance can identify erroneous 
GNSS results.

Overall, the proposed GNSS-covariance estimation can 
improve the GNSS–lidar integration performance. The 
globally referenced positioning is obtained. This result 
proves that covariance estimation is significant for GNSS–
lidar integration. However, the integrated positioning 
result is still large, with its best performance achieving  
7.49 m of mean error in the second experiment. To real-
ize autonomous vehicles, this kind of scenario is still a 
challenge for GNSS positioning. Even real-time kinematic 
(RTK) GNSS can suffer from severe NLOS and multipath 
effects. Direct NLOS exclusion will result in a big distor-
tion of the satellites’ distribution, namely, the HDOP. 
Thus, effectively modeling the covariance of the GNSS 
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FIG 17 Experiment 2: the positioning error of the GNSS–lidar integration 
results based on the three methods. The red, green, and blue curves 
indicate GNSS–lidar integration methods A, B, and C, respectively.
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FIG 16 (a)–(c) Experiment 2: the results of the GNSS–lidar integration based on the three integration methods. The blue curve consists of the optimized 
nodes (refer to the red node in Figure 6). The black curve indicates the ground truth of the trajectory provided by the NovAtel SPAN-CPT. The red line 
represents the edge from the GNSS positioning (refer to the red line in Figure 6). The green points show the organized point clouds.
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positioning is a potential solution to improve the robust-
ness of GNSS–lidar integration in superurbanized areas.

Conclusions and Future Work
With the rapid development of autonomous vehicles, the 
GNSS and lidar became indispensable for sensing and lo-
calization functions. The environment feature can be used 
to improve the GNSS-positioning performance in urban-
ized areas that have many tall buildings. To the best of our 
knowledge, this article is the first attempt to employ lidar-
based object detection to improve the GNSS.

This article innovatively employs lidar perception to de-
tect building surfaces to facilitate the covariance modeling 
of the GNSS positioning for GNSS–lidar integration. This 
study first employs lidar to provide lidar odometry based 
on the state-of-art NDT, and the corresponding covariance 
is estimated. Then, the building surface is found and iden-
tified using object detection, followed by the NLOS identi-
fication and novel exclusion. Third, the GNSS positioning 
is implemented using the surviving range measurements. 
The GNSS-positioning covariance is proposed based on 
an NLOS model. Fourth, the lidar odometry and the GNSS 
positioning are integrated through a graph-based SLAM 
framework. Finally, experiments are conducted to validate 
the proposed GNSS–lidar integration framework. The re-
sults show that the proposed method of GNSS-positioning 
covariance estimation can model the majority of the posi-
tioning error caused by NLOS reception. The performance 
of the proposed GNSS–lidar integration with adaptive 
covariance outperforms the conventional GNSS–lidar in-
tegration that has constant covariance. Furthermore, the 
remaining GNSS-positioning error caused by multipath 
effects will be studied and modeled to improve the perfor-
mance of GNSS-positioning covariance estimation. More-
over, the RTK GNSS will be combined with lidar to verify 
how much the proposed method can help the RTK GNSS–li-
dar integration.
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